A plane electromagnetic wave in a non-magnetic dielectric medium is given by $\vec E\, = \,{\vec E_0}\,(4 \times {10^{ - 7}}\,x - 50t)$ with distance being in meter and time in seconds. The dielectric constant of the medium is
$2.4$
$5.8$
$8.2$
$4.8$
The magnetic field of an electromagnetic wave is given by
$\vec B = 1.6 \times {10^{ - 6}}\,\cos \,\left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {2\hat i + \hat j} \right)\frac{{Wb}}{{{m^2}}}$ The associated electric field will be
The electric field of a plane electromagnetic wave is given by $\vec E = {E_0}\hat i\,\cos \,\left( {kz} \right)\,\cos \,\left( {\omega t} \right)$ The corresponding magnetic field $\vec B$ is then given by
If electric field intensity of a uniform plane electro magnetic wave is given as
$E =-301.6 \sin ( kz -\omega t ) \hat{a}_{ x }+452.4 \sin ( kz -\omega t )$ $\hat{a}_{y} \frac{V}{m}$
Then, magnetic intensity $H$ of this wave in $Am ^{-1}$ will be
[Given: Speed of light in vacuum $c =3 \times 10^{8} ms ^{-1}$, permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7} NA ^{-2}$ ]
Electromagnetic wave of intensity $1400\, W/m^2$ falls on metal surface on area $1.5\, m^2$ is completely absorbed by it. Find out force exerted by beam
The velocity of certain ions that pass undeflected through crossed electric field $E = 7.7\,k\,V /m$ and magnetic field $B = 0.14\,T$ is.....$km/s$